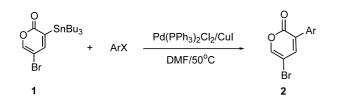


Tetrahedron Letters 43 (2002) 9015-9017


Regioselective Stille coupling reactions of 3,5-dibromo-2-pyrone with various aryl and vinyl stannanes

Won-Suk Kim, Hyung-Jin Kim and Cheon-Gyu Cho*

Department of Chemistry, Hanyang University, Seoul 133-791, South Korea Received 29 September 2002; accepted 16 October 2002

Abstract—3,5-Dibromo-2-pyrone underwent facile regioselective Stille coupling reactions with aryl, heteroaryl and vinyl stannanes to produce various 3-substituted, 5-bromo-2-pyrones. Addition of a catalytic amount of CuI greatly increased the selectivity and chemical yield of the desired 3-aryl-5-bromo-2-pyrone. Second Stille coupling reactions on the resulting 3-aryl-2-pyrones gave rise to a series of potentially useful 2-pyrones with two different functionalities at C3 and C5 position in good to excellent isolated yields. 2-Pyrones with pyridyl groups at C3 position can undergo Lewis acid catalyzed Diels–Alder cycloaddition reactions with benzyl vinyl ether. © 2002 Elsevier Science Ltd. All rights reserved.

In connection with our current interest in 3,5-dibromo-2-pyrone, which stems from its ambident dienyl character,^{1–7} we have studied various other transition metal catalyzed coupling reactions on this compound. Recently, we have reported Pd-catalyzed regioselective alkynylations and stannylations of 3,5-dibromo-2pyrone.¹ Also reported was that the resulting 3-(trimethylstannyl)-5-bromo-2-pyrone underwent Stille coupling reactions with various aryl halides to furnish a series of previously unknown 3-aryl-5-bromo-2-pyrones in a highly regioselective manner.² With this method, we were able to prepare a wide variety of synthetically useful 3-substituted-5-bromo and 3,5-disubsituted-2pyrones (Scheme 1).

Scheme 1. Stille couplings of 3-(trimethylstannyl)-5-bromo-2pyrone with various aryl halides.

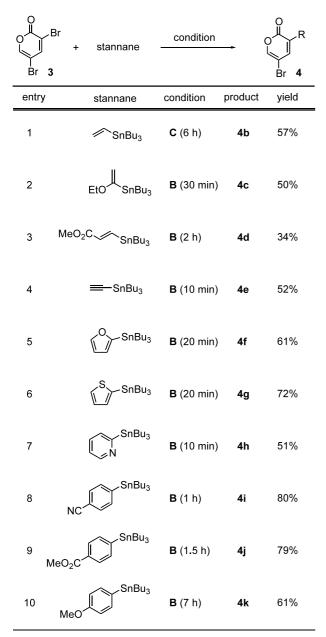
Although quite useful, this approach requires a separate preparation of 3-trimethylstannyl-5-bromo-2pyrone for the synthesis of 3-substituted, 5-bromo-2-pyrones. In addition, the stannylated 2-pyrone was not effective in the couplings with heteroaryl halides such as 2-bromopyridine, 2-bromothiophene and 2-bromofuran. For synthetic inconvenience and aforementioned ineffectiveness, we have studied direct Stille coupling reactions of 3,5-dibromo-2-pyrone with various stannyl reagents.

Herein, we wish to report regioselective Stille coupling reactions of 3,5-dibromo-2-pyrone with aryl, heteroaryl and vinyl stannanes. A set of experiments showed that the condition B gave best results in terms of chemical yields and regioselectivity (Table 1). Addition of a catalytic amount of CuI (10 mol%) greatly increased the regioselectivity and chemical yield of the desired 3-phenyl-5-bromo-2-pyrone (**4a**).

	\downarrow + PhSnBu ₃ \longrightarrow	conditions O Ph +	
	5.	Br 1a	Ph 4a'
	Condition	4a (%)	4a' (%)
1	Pd(PPh ₃) ₄ /toluene/100°C/30 min	81	16
3	Pd(PPh ₃) ₄ /CuI/toluene/100°C/30 min	94	Trace
С	Pd(PhCN) ₂ Cl ₂ /AsPh ₃ /NMP/20°C/5 h	60	Trace
D	Pd(PPh ₃) ₄ /THF/100°C/40 min	64	11
5	$Pd_2(dba)_3/THF/100^{\circ}C/4$ h	30	5

 Table 1. Stille coupling reaction of 3,5-dibromo-2-pyrone

 with tributylphenyltin under different reaction conditions

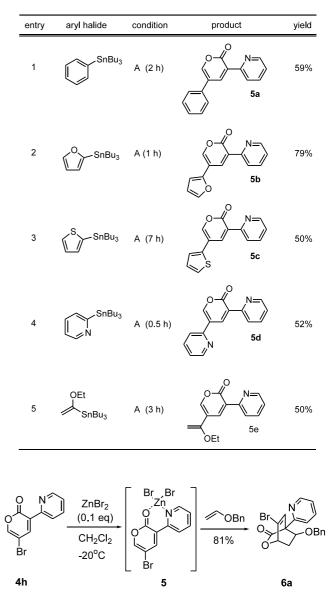

 \sim

 \cap

0040-4039/02/ $\$ - see front matter $\$ 2002 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(02)02305-5

^{*} Corresponding author. Tel.: +82-2-2290-0936; fax: +82-2-2299-0762; e-mail: ccho@hanyang.ac.kr

Table 2. Stille couplings with various other stannanes


Under the condition B, we undertook coupling reactions with various other aryl, heteroaryl and vinyl stannyl reagents (Table 2).⁸

The coupling reaction with vinyltin (entry 1) gave virtually no coupling product under the condition B, but did proceed under the condition C to give **4b** in 57% yield.

As mentioned previously, 3-(trimethylstannyl)-5bromo-2-pyrone is not effective in the coupling reactions with 2-bromopyridine, 2-bromothiophene and 2-bromofuran. Use of 3,5-dibromo-2-pyrone as electrophilic partner in this way gave much better results, providing the corresponding 3-heteroaryl-5-bromo-2pyrones in 51–72% isolated yields (entries 5, 6, and 7). Second coupling reactions of the resulting 3-substituted-5-bromo-2-pyrones generated a series of structurally interesting 2-pyrones bearing two different groups in 50–79% isolated yields (Table 3), much better than the similar cases in the literature where 5-bromo-2-pyrone was coupled with vinyl or aryl stannanes in 41-43% yields.⁹

All the products shown in the Table 2 are potentially ambident dienes, capable of undergoing Diels–Alder cycloadditions with either electron poor or rich dienophiles.² Of particular interest is that 2-pyrone derivatives with 2-pyridine substituent at 3-position can undergo Diels–Alder cycloadditions with electron rich dienophiles in the presence of Lewis acids. As shown in Scheme 2 as a representative case, the product **4h** underwent Zn^{+2} catalyzed Diels–Alder cycloaddition

Table 3. Stille coupling reactions of 4h with selected aryl halides

Scheme 2. ZnBr₂ catalyzed Diels–Alder cycloaddition of 3-(2-pyridyl)-5-bromo-2-pyrone with benzyl vinyl ether.

with benzyl vinyl ether to furnish the *endo*-cycloadduct **6a** as an essentially single product in 81% yield after 48 h at -20° C. No cycloaddition was, however, observed with electron deficient methyl acrylate under the same reaction conditions, understandable based on electronic requirement.

Mono-coordinating BF_3 etherate did not give the cycloadduct. The cycloaddition proceeds in a catalytic manner, presumably through the intermediate **5**. The 2-pyrones **4f** and **4g** were much poorer diene, perhaps due to their inability to form tight Zn-chelates. After 12 h at rt, they gave the corresponding cycloadducts in 30–40% yields under the identical conditions.

The di-substituted 2-pyrones **5a**–d also underwent yet smooth Zn^{+2} catalyzed cycloadditions with benzyl vinyl ether, providing the *endo*-cycloadducts **6a**–d with no detectable *exo*-adducts produced (Table 4).¹⁰

In summary, we have found that 3,5-dibromo-2-pyrone underwent highly regioselective Stille coupling reactions with various aryl, heteroaryl and vinyl stannanes to furnish 3-substituted, 5-bromo-2-pyrones. Subsequent second Stille couplings on the resulting 2-pyrones generated 3,5-disubstituted 2-pyrones.¹¹ 2-Pyrones with pyridyl group at C3 position undergo diastereospecific

Table 4. $ZnBr_2$ catalyzed Diels-Alder cycloadditions of **5a-d** with benzyl vinyl ether

entry	diene	condition	product	endo:exo	yield
1	5a	rt (48h)	O O O Ga	100:0	64%
2	5b	rt (48h)		100:0	73%
3	5c	rt (48h)	O O O O O O O O O O O O O O O O O O O	100:0	73%
4	5d	rt (48h)	OBn O 6d	100:0	55%

 Zn^{+2} catalyzed Diels–Alder cycloadditions with electron rich benzyl vinyl ether, but not with electron deficient methyl acrylate. We are currently screening various chiral ligands for their asymmetric Diels–Alder reactions.

Acknowledgements

This work was supported by IMT-2000 Program of Ministry of Information & Communication, Republic of Korea.

References

- 1. Lee, J.-H.; Park, J.-S.; Cho, C.-G. Org. Lett. 2002, 4, 1171.
- Lee, J.-H.; Kim, W.-S.; Lee, Y. Y.; Cho, C.-G. Tetrahedron Lett. 2002, 43, 5779.
- Min, S.-H.; Kim, Y.-W.; Choi, S.; Park, K. B.; Cho, C.-G. Bull. Korean Chem. Soc. 2002, 23, 1021.
- Lee, H.-S.; Kim, D.-S.; Won, H.; Choi, J. H.; Lee, H.; Cho, C.-G. *Tetrahedron Lett.* 2002, 43, 5591.
- Cho, C.-G.; Kim, Y.-W.; Lim, Y.-K.; Park, J.-S.; Lee, H. J. Org. Chem. 2002, 67, 290.
- Cho, C.-G.; Park, J.-S.; Jung, I.-H.; Lee, H. Tetrahedron Lett. 2001, 42, 1065.
- Cho, C.-G.; Kim, Y.-W.; Kim, W.-K. *Tetrahedron Lett.* 2001, 42, 8193.
- 8. Typical procedure: A mixture of 30 mg (0.12 mmol) of 3,5-dibromo-2-pyrone, 52 mg (0.14 mmol) of tributylphenyltin, 7 mg (5 mol%) of Pd(PPh₃)₄, 2 mg (10 mol%) of CuI and 1 mL of toluene was heated at 100°C for 0.5 h. Upon cooling to rt, the reaction mixture was treated with saturated KF (aq.), diluted with Et₂O, and filtered through a plug of Celite. The filtrate was dried over MgSO₄, concentrated and purified by column chromatography (hexanes:EtOAc, 20/1) provided 28 mg of **1a** in 94% yield.
- (a) Danieli, B.; Lesma, G.; Martinelli, M.; Passarella, D.; Peretto, I.; Silvani, A. *Tetrahedron* **1998**, *54*, 14081; (b) Liu, Z.; Meinwald, J. J. Org. Chem. **1996**, *61*, 6693.
- 10. Typical procedure: A mixture of 35 mg (0.14 mmol) of 4h, 38 mg (2 equiv.) of benzyl vinyl ether, 3 mg (10 mol%) of ZnBr₂ in CH₂Cl₂ was stirred for 48 h at -20°C. The reaction mixture was concentrated and purified by column chromatography (hexanes:EtOAc) to provide 44 mg of 6a in 81% yield.
- 11. All new 2-pyrone derivatives prepared were fully characterized with ¹H, ¹³C NMR, FT-IR and HRMS.